720 research outputs found

    Knudsen Effect in a Nonequilibrium Gas

    Full text link
    From the molecular dynamics simulation of a system of hard-core disks in which an equilibrium cell is connected with a nonequilibrium cell, it is confirmed that the pressure difference between two cells depends on the direction of the heat flux. From the boundary layer analysis, the velocity distribution function in the boundary layer is obtained. The agreement between the theoretical result and the numerical result is fairly good.Comment: 4pages, 4figure

    How confined lubricants diffuse during shear

    Get PDF
    The translational diffusion of a fluorescent dye embedded at a dilute concentration in a confined fluid was compared at rest and during shear. The fluid, octamethylcyclotetrasiloxane (OMCTS), was confined between step-free muscovite mica to thickness 3-4 layers. Fluorescence correlation spectroscopy showed that the time scales of intensity-intensity autocorrelation functions were essentially the same during shear and at rest, except they were faster during shear by a factor of 2 to 5. This dynamical probe of how liquids order in molecularly thin films fails to support the hypothesis that shear produced a melting transition.open242

    Dewetting, partial wetting and spreading of a two-dimensional monolayer on solid surface

    Full text link
    We study the behavior of a semi-infinite monolayer, which is placed initially on a half of an infinite in both directions, ideal crystalline surface, and then evolves in time due to random motion of the monolayer particles. Particles dynamics is modeled as the Kawasaki particle-vacancy exchange process in the presence of long-range attractive particle-particle interactions. In terms of an analytically solvable mean-field-type approximation we calculate the mean displacement X(t) of the monolayer edge and discuss the conditions under which such a monolayer spreads (X(t) > 0), partially wets (X(t) = 0) or dewets from the solid surface (X(t) < 0).Comment: 4 pages, 2 figures, to appear in PRE (RC

    Spreading of a Macroscopic Lattice Gas

    Full text link
    We present a simple mechanical model for dynamic wetting phenomena. Metallic balls spread along a periodically corrugated surface simulating molecules of liquid advancing along a solid substrate. A vertical stack of balls mimics a liquid droplet. Stochastic motion of the balls, driven by mechanical vibration of the corrugated surface, induces diffusional motion. Simple theoretical estimates are introduced and agree with the results of the analog experiments, with numerical simulation, and with experimental data for microscopic spreading dynamics.Comment: 19 pages, LaTeX, 9 Postscript figures, to be published in Phy. Rev. E (September,1966

    Simulations of the Static Friction Due to Adsorbed Molecules

    Full text link
    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The observed trends in friction can be understood in terms of a simple hard sphere model.Comment: 13 pages, 13 figure

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances rξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
    corecore